First Measurement of $\sigma(gg \to t\bar{t})/\sigma(q\bar{q} \to t\bar{t})$ in $p\bar{p}$ Collisions at E_{CM} of 1.96 TeV

Shabnaz Pashapour, Pekka K. Sinervo University of Toronto

Introduction

• According to SM, in $p\bar{p}$ collisions at $\sqrt{s} \sim 2 \text{ TeV}$

•
$$gg \rightarrow t\bar{t}$$
 ~ 15%
• $q\bar{q} \rightarrow t\bar{t}$ ~ 85%

- Measure $\sigma_{(gg \to t\bar{t})}/\sigma_{(p\bar{p} \to t\bar{t})}$
 - Test of pQCD calculations

- Processes differ in underlying activity
 - The difference comes from ISR

The Difference

- Gluons radiate more gluons than quarks do
 - More charged particles in gg channel
- Track Multiplicity
 - Low p_T
 - $|\eta| \le 1.1$
 - Matched to the event vertex
 - Away from jets
 - Correct for area differences

Track if no magnetic field exists

Track in magnetic field

Jet of 0.4 and its annuli

Calibration Samples

- Can not rely on the modeling of gluon radiation
- Should calibrate using data
 - W + n jet events
 - W with no jet is mainly $q\overline{q}'$
 - As jet multiplicity increases, the gluon-content increases
 - Dijet events
 - Gluon-content decreases as the leading jet E_T increases

Jet in W+ n jet categories:

- $E_T \ge 15$
- $|\eta| \leq 2$

Leading jet in dijet categories:

- starting from 80 GeV
- bins of 20 GeV
- up to 220 GeV or more

Correlation of $\langle N_{trk} \rangle$ and $\langle N_g \rangle$...

- Count the number of gluons which are part of the Martix Element
- Add the number for all the MC events
- Divide by the total number of MC events

number of gluons in the initial and final state of the process

Total number of events

... Correlation of $\langle N_{trk} \rangle$ and $\langle N_g \rangle$...

Sample	MC	<N _g $>$	Data	<N _{trk} $>$
W+0 jet	0.10	±0.10	10.4	7±0.01
W+1 jet	0.77	±0.23	11.32	2 ±0.04
W+2 jets	1.18	±0.15	11.63	3 ±0.09
80-100 GeV	1.72	±0.03	12.67	7 ±0.04
100-120 GeV	1.62 ±0.04		12.49 ±0.05	
120-140 GeV	1.44	±0.04	12.14	4 ±0.09

Using the fit to find $< N_g >$ for $< N_{trk} >$ of other calibration samples

Sample	MC prediction	Fit result		
140-160 GeV	1.26 ±0.04	1.19 ±0.04		
160-180 GeV	1.13 ±0.04	1.06 ± 0.05		
180-200 GeV	0.99 ± 0.07	0.93 ±0.05		
200-220 GeV	0.92 ±0.10	0.75 ±0.07		
220+ GeV	0.67 ± 0.10	0.60 ± 0.07		

Measuring <Ng> in Calibration Samples

- Define and parameterize two distributions representing no-gluon and gluon-rich samples
 - F_q , W+0 jet which is almost purely $qq \rightarrow W$
 - F_g , dijet sample with leading jet E_T of 80-100 GeV after we subtract the qq component from it, here we use PYTHIA dijet Monte Carlo calculations, an average of 2.37 gluons
- Use the normalized parameterization of the two distributions in a fit to the low p_T track multiplicity distribution in any other sample

$$N[f_{glu-rich}F_g^{norm} + (1-f_{glu-rich})F_q^{norm}]$$

 $< N_g > measured = 2.37*f_{glu-rich}$

No-Gluon & Gluon-Rich Distribution

DATA dijet 80-100 GeV Based on MC 27% qq \rightarrow qq <Nq> = 2.37for the rest

80-100 GeV Scaled by 0.27 to Iterate to subtract gluon contributions represent qq → qq from W+0 jet data distribution

Parameterizations

Two sample fits

Sample	$<$ N _g $>$ from fit $2.37 f_g$	MC <n<sub>g></n<sub>	
W+1 jet	0.87 ± 0.03	0.92 ± 0.08	
W+2 jet	1.06 ± 0.05	1.33 ±0.15	
100-120 GeV	1.61 ± 0.03	1.62 ±0.02	
120-140 GeV	1.49 ± 0.05	1.44 ±0.04	
140-160 GeV	1.30 ± 0.03	1.26 ±0.04	
160-180 GeV	1.18 ± 0.03	1.14 ±0.04	
180-200 GeV	1.06 ± 0.05	0.99 ± 0.07	
200-220 GeV	0.95 ± 0.07	0.92 ± 0.10	
220+ GeV	0.76 ± 0.07	0.67 ± 0.10	

Fraction of gg → ttbar events

■ f_g in W+≥4 jet tagged sample can be written as

$$f_g = f_{bkg} f_g^{bkg} + (1 - f_{bkg}) f_g^{tt}$$

where f_{bkg} is fraction of background in the sample, $f_g^{\ bkg}$ is the gluon rich fraction in the background and $f_g^{\ tt}$ is the fraction of gluon rich events in the ttbar signal

Systematic uncertainties

Type	Source	$f_g^{\ bkg}$	f_g	$A_{gg o tt} / A_{qq o tt}$
Quark-gluon composition	qq →qq fraction	±0.02	± 0.02	-
	K_{T}	+0.00	±0.02	-
	QCD bkg composition	+0.00	+0.00	-
Track counting	Low ET cut	+0.02	+0.00	-
	Trk/jet correction	+0.00	+0.03	-
	Z vertex matching	-	-	-
Others	true pseudoexperiments comparison	±0.05		
	$f_g^{\ bkg}$ estimate method	±0.13	-	-
	PDF and MC	-	-	±0.04
Total		±0.14	±0.04	±0.04

Result

- Using a background fraction of $(3 \pm 3)\%$, we get $(DF)^{tt}$ Preliminary $(DF)^{tt} = 0.28 \pm 0.25(stat) \pm 0.10(syst)$
 - And using a ttbar acceptance of 0.06 ± 0.01 and 0.05 ± 0.01 for gg fusion and qqbar respectively, we find

$$\frac{\sigma(gg \to t\bar{t})}{\sigma(p\bar{p} \to t\bar{t})} = 0.25 \pm 0.24(stat) \pm 0.10(syst)$$

Summary

- Using about 330 pb⁻¹ data collected at CDF and a data-driven method, we show
 - There exists a clear correlation between the $\langle N_g \rangle$ and $\langle N_{trk} \rangle$
 - $\langle N_g \rangle$ in a sample can be determined using low p_T track multiplicity distribution of the sample
 - The fit results are in good agreement with MC predictions
 - The first measurement of

$$\frac{\sigma(gg \to t\bar{t})}{\sigma(p\bar{p} \to t\bar{t})} = 0.25 \pm 0.24(stat) \pm 0.10(syst)$$